Niveles de medida


Niveles de medida

Niveles de medida

El nivel de medida de una variable en matemáticas y estadísticas es una clasificación acordada con el fin de describir la naturaleza de la información contenida dentro de los números asignados a los objetos y, por lo tanto, dentro de una variable. Según la teoría de las escalas de medida, varias operaciones matemáticas diferentes son posibles dependiendo del nivel en el cual la variable se mide.

Contenido

Niveles de clasificación

La medición puede definirse como la asignación de numerales a objetos o sucesos siguiendo ciertas reglas Stevens (1946). El autor de esta definición desarrolló un método para clasificar los diferentes resultados de las mediciones en lo que llamó niveles de medición. Un nivel de medición es la escala que representa una jerarquía de precisión dentro de la cual una variable puede evaluarse, en función de las características que rigen las escalas. Por ejemplo, la variable estatura puede analizarse en diferentes niveles de medida. Un conjunto de personas pueden clasificarse en altos y bajos, A y B respectivamente, creando dos grupos. Para ello no es necesario recurrir a ninguna cinta métrica, simplemente basta observar quienes destacan sobre los demás (el grupo de altos) y el resto completarán el grupo de bajos. El nivel de medición que corresponde a esta forma de medir es nominal. También podrían alinearse a los sujetos y ordenarlos según su altura, el primero sería el más alto y el último el más bajo, el resto se organizaría de forma que cada persona tuviese delante a uno más alto y detrás a uno más bajo. El nivel de medición en este caso es ordinal. Hasta el momento no es posible decir cuánto es una persona más alta que otra A través del número de personas que hay entre dos sujetos, por ejemplo, Andréa y Juan en la fila ordenada anteriormente. En este caso además del orden se conoce la magnitud de la altura. Si en lugar de utilizar el número de personas se recurre a una regla se puede ofrecer otra medida de la altura. Esta forma de medir es propia del nivel de intervalos, que permite saber la magnitud de los elementos comparando unos con otros. La cuarta posibilidad es utilizar un metro que sitúa el cero en el mismo suelo, y por lo tanto, la altura se define en función de la distancia desde la cabeza al suelo (valor cero absoluto donde se sitúa la ausencia de altura). En ciencias sociales es poco frecuente encontrar variables en niveles de razón, normalmente son nominales, ordinales y en ocasiones de intervalos, rara vez de razón. Una característica de esta clasificación es que las propiedades de una escala se cumplen en el nivel superior. En la estadística descriptiva y con el fin de realizar pruebas de significancia, las variables se clasifican de la siguiente manera de acuerdo con su nivel de medida:

  • Nominal (también categórica o discreta)
  • Ordinal
  • de intervalo (continua)
  • Racional (continua)

Las variables de intervalo y de razón también están agrupadas como variables continuas

Medidas nominales

El nivel nominal de medición, de la palabra latina nomún (nombre) describe variables de naturaleza categórica que difieren en calidad más que en cantidad (Salkind, 1998: 113). Ante las observaciones que se realizan de la realidad, es posible asignar cada una de ellas exclusivamente a una categoría o grupo. Cada grupo o categoría se denomina con un nombre o número de forma arbitraria, es decir, que se etiqueta en función de los deseos o conveniencia del investigador. Este nivel de medición es exclusivamente cualitativo y sus variables son por lo tanto cualitativas. Por ejemplo, los sujetos que son del curso de A de 2º de ESO y los de B generan dos grupos. Cada sujeto se asigna a un grupo, y las variables son de tipo cualitativo (de calidad) y no cuantitativo puesto que indica donde está cada sujeto y no "cuanto es de un curso y no de otro". En este ejemplo los números 2 y 3 pueden sustituir las letras A y B, de forma que 2 y 3 son simples etiquetas que no ofrecen una valoración numérica sino que actúan como nominativos. En esta escala hay que tener en cuenta dos condiciones: - No es posible que un mismo valor o sujeto esté en dos grupos a la vez. No se puede ser de 2º y 3º a la vez. Por lo tanto este nivel exige que las categorías sean mutuamente excluyentes entre sí. - Los números no tienen valor más que como nombres o etiquetas de los grupos.


En este tipo de medidas, se asignan nombres o etiquetas a los objetos. La asignación se lleva a cabo evaluando, de acuerdo con un procedimiento, la similaridad de la instancia a ser medida con cada conjunto de ejemplares nominados o definiciones de categorías. El nombre de la mayoría de los ejemplares nominados o definiciones es el “valor” asignado a la medida nominal de la instancia dada. Si dos instancias tienen el mismo nombre asociado a ellas, entonces pertenecen a la misma categoría, y ese es el único significado que las medidas nominales tienen. Para el procesamiento de datos, los nombres pueden ser remplazados por números, pero en ese caso el valor numérico de los números dados es irrelevante. El único tipo de comparaciones que se pueden hacer con este tipo de variables es el de igualdad o diferencia. Las comparaciones “mayor que”o “menor que” no existen entre nombres, así como tampoco operaciones tales como la adición, la substracción, etc.

Ejemplos de medidas nominales son: estado marital, género, raza, credo religioso, afiliación política, lugar de nacimiento.

La única medida de tendencia central que se puede hacer es la moda. La dispersión estadística se puede hacer con tasa de variación, índice de variación cualitativa, o mediante entropía de información. No existe la desviación estándar.

Medida ordinal

El nivel ordinal describe las variables a lo largo de un continuo sobre el que se pueden ordenar los valores. En este caso las variables no sólo se asignan a grupos sino que además pueden establecerse relaciones de mayor que, menor que o igual que, entre los elementos. Por ejemplo, se puede ordenar al conjunto de alumnos del módulo de diversificación curricular en función de la calificación obtenida en el último examen. Las operaciones matemáticas posibles son: contabilizar los elementos, igualdad y desigualdad, además de ser mayor o menor que.


En esta clasificación, los números asignados a los objetos representan el orden o rango de las entidades medidas. Los números se denominan ordinales, las variables se denominan ordinales o variables de rango. Se pueden hacer comparaciones como “mayor que”, “menor que”, además de las comparaciones de igualdad o diferencia. Las operaciones aritméticas como la sustracción a la adición no tienen sentido en este tipo de variables.

Ejemplos de variables ordinales son: la dureza de los minerales, los resultados de una carrera de caballos, actitudes como preferencias, conservatismo o prejuicio, nivel socioeconomico. Las medidas de tendencia central de una variable ordinal pueden representarse por su moda o su mediana. La mediana proporciona mas información.

Medida de intervalo

El nivel de intervalo procede del latín interval lun (espacio entre dos paredes). Este nivel integra las variables que pueden establecer intervalos iguales entre sus valores. Las variables del nivel de intervalos permiten determinar la diferencia entre puntos a lo largo del mismo continuo. Las operaciones posibles son todas las de escalas anteriores, más la suma y la resta.


En este tipo de medida, los números asignados a los objetos tienen todas las características de las medidas ordinales, y además las diferencias entre medidas representan intervalos equivalentes. Esto es, las diferencias entre una par arbitrario de medidas puede compararse de manera significativa. Por lo tanto, operaciones tales como la adición, la sustracción tienen significado. El punto cero de la escala es arbitrario y se pueden usar valores negativos. Las diferencias se pueden expresar como razones. Las medidas de tendencia central pueden representarse mediante la moda, la mediana al promedio aritmético. El promedio proporciona más información.

Las variables medidas al nivel de intervalo se llaman variables de intervalo o variables de escala.

Ejemplos de este tipo de variables son la fecha, temperatura.

Medida racional

El nivel de razón, cuya denominación procede del latín ratio (cálculo), integra aquellas variables con intervalos iguales pueden situar un cero absoluto. El cero absoluto supone identificar una posición de ausencia total del rasgo o fenómeno. Tiene varias características importantes: - El valor cero no es arbitrario (no responde a las conveniencias de los investigadores). Un ejemplo claro es la temperatura. La existencia de un cero en la escala Celsius no supone la ausencia de temperatura, puesto que el cero grados centígrados está situado por arbitrio de los creadores de la escala. Por el contrario, la escala Kelvin sí tiene un cero absoluto, precisamente allí donde las moléculas cesan su actividad y no se produce por lo tanto roce entre los componentes moleculares. El cero absoluto de la escala Kelvin se sitúa a unos -273 grados centígrados. - La presencia de un cero absoluto permite utilizar operaciones matemáticas más complejas a las otras escalas. Hasta ahora se podía asignar, establecer la igualdad (nominal), mayor o menor que (ordinal), sumar y restar (intervalo) a las que se añade multiplicar, dividir, etc.


Los números asignados a los objetos tienen todas las características de las medidas de intervalo y además tienen razones significativas entre pares arbitrarios de números. Operaciones tales como la multiplicación y la división tienen significado.

La posición del cero no es arbitraria para este tipo de medida. Las variables para este nivel de medida se llaman variables racionales. La mayoría de las cantidades físicas, tales como la mas, longitud, energía, se miden en la escala racional, así como también la temperatura (en kelvins) relativa al cero absoluto. Las medidas de tendencia central de una variable medida a nivel racional pueden representarse por la moda, la mediana, el promedio aritmético o su promedio geométrico. Lo mismo que con la escala de intervalos, el promedio aritmético proporciona la mayor información.

Otros ejemplos de variables racionales son la edad, y otras medidas de tiempo.

Referencias

Salkind, N. J. (1998). Métodos De Investigación (3º ed., pág. 380). México [etc.]: Prentice Hall.

Stevens, S.S. (1946). On the theory of Scales Measurement. Science, 103(2684), 677-680.

Matas, A. (2000). Análisis de datos I. Sevilla: Kronos.es:Escalas de medida

Obtenido de "Niveles de medida"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Medida de la pobreza — Mapa de la pobreza mundial por país, muestra el porcentaje de población que vive con menos de $1 al día …   Wikipedia Español

  • Nivel de medida — Se ha sugerido que Escala de medición sea fusionado en este artículo o sección (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. El nivel de medida de una variable en matemáticas y estadísticas,… …   Wikipedia Español

  • Unidad de medida — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar al au …   Wikipedia Español

  • Proceso Analítico Jerárquico — Saltar a navegación, búsqueda Una jerarquía AHP, con prioridades finales. El objetivo de la decisión es seleccionar el líder que mejor se ajusta de un grupo de tres candidatos. Los factores que se deben considerar son edad, experiencia, educación …   Wikipedia Español

  • Mario vs. Donkey Kong 3: Minis March Again — Mario vs. Donkey Kong 3: Minis March Again! Desarrolladora(s) NST Distribuidora(s) Nintendo Plataforma(s) Nintendo DSiWare Fecha(s) de lanzamiento …   Wikipedia Español

  • Análisis modal de fallos y efectos — Un análisis modal de fallos y efectos (AMFE) es un procedimiento de análisis de fallos potenciales en un sistema de clasificación determinado por la gravedad o por el efecto de los fallos en el sistema. Es utilizado habitualmente por empresas… …   Wikipedia Español

  • Kelion Online — Este artículo o sección se refiere o está relacionado con un videojuego futuro o en desarrollo. La información de este artículo puede cambiar frecuentemente. Por favor, no agregues datos especulativos y recuerda colocar referencias a fuentes… …   Wikipedia Español

  • Carbono orgánico total — Saltar a navegación, búsqueda Carbono Orgánico Total (COT; a veces TOC por su nombre en inglés, Total organic carbon) es la cantidad de carbono unido a un compuesto orgánico y se usa frecuentemente como un indicador no específico de calidad del… …   Wikipedia Español

  • Contaminación radiactiva — Se denomina contaminación radiactiva o contaminación radioactiva a la presencia no deseada de sustancias radiactivas en el entorno. Ésta contaminación puede proceder de radioisótopos naturales o artificiales. La primera de ellas se da cuando se… …   Wikipedia Español

  • Contaminación — Uno o varios wikipedistas están trabajando actualmente en este artículo o sección. Es posible que a causa de ello haya lagunas de contenido o deficiencias de formato. Si quieres, puedes ayudar y editar, pero por favor: antes de realizar… …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.