Mediana (estadística)


Mediana (estadística)
Para otros usos de este término, véase mediana.

En el ámbito de la estadística, la mediana, representa el valor de la variable de posición central en un conjunto de datos ordenados. De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra. La mediana coincide con el percentil 50, con el segundo cuartil y con el quinto decil.

Contenido

Cálculo

Existen dos métodos para el cálculo de la mediana:

  1. Considerando los datos en forma individual, sin agruparlos.
  2. Utilizando los datos agrupados en intervalos de clase.

A continuación veamos cada una de ellas.

Datos sin agrupar

Sean x_1,x_2,x_3,\ldots,x_n los datos de una muestra ordenada en orden creciente y designando la mediana como Me, distinguimos dos casos:


a) Si n es impar, la mediana es el valor que ocupa la posición (n + 1) / 2 una vez que los datos han sido ordenados (en orden creciente o decreciente), porque éste es el valor central. Es decir: Me = x(n + 1) / 2.

Por ejemplo, si tenemos 5 datos, que ordenados son: x1 = 3, x2 = 6, x3 = 7, x4 = 8, x5 = 9 => El valor central es el tercero: x(5 + 1) / 2 = x3 = 7. Este valor, que es la mediana de ese conjunto de datos, deja dos datos por debajo (x1, x2) y otros dos por encima de él (x4, x5).


b) Si n es par, la mediana es la media aritmética de las dos observaciones centrales. Cuando n es par, los dos datos que están en el centro de la muestra ocupan las posiciones n / 2 y n / 2 + 1. Es decir: Me = (xn / 2 + (xn / 2 + 1)) / 2.

Por ejemplo, si tenemos 6 datos, que ordenados son: x1 = 3, x2 = 6, x3 = 7, x4 = 8, x5 = 9, x6 = 10 => Hay dos valores que están por debajo del x_{\frac {6} {2}} = x_3 = 7 y otros dos que quedan por encima del siguiente dato x_{{\frac {6} {2}}+1} = x_4 = 8. Por tanto, la mediana de este grupo de datos es la media aritmética de estos dos datos: M_e = \frac {x_3 + x_4}{2} = \frac {7 + 8} {2}=7,5.

Datos agrupados

Al tratar con datos agrupados, si  {{\frac {n} {2}}} coincide con el valor de una frecuencia acumulada, el valor de la mediana coincidirá con la abscisa correspondiente. Si no coincide con el valor de ninguna abcisa, se calcula a través de semejanza de triángulos en el histograma o polígono de frecuencias acumuladas, utilizando la siguiente equivalencia:

Davicrege3.JPG

Dónde Ni y Ni − 1 son las frecuencias absolutas acumuladas tales que N_{i-1} < {{\frac {n} {2}}} < N_{i}, ai − 1 y ai son los extremos, inferior y superior, del intervalo donde se alcanza la mediana y Me = ai − 1 es la abscisa a calcular, la moda. Se observa que aiai − 1 es la amplitud de los intervalos seleccionados para el diagrama.

Ejemplos para datos sin agrupar

Ejemplo 1: Cantidad (N) impar de datos

xi fi Ni
1 2 2
2 2 4
3 4 8
4 5 13
5 8 21 > 19.5
6 9 30
7 3 33
8 4 37
9 2 39

Las calificaciones en la asignatura de Matemáticas de 39 alumnos de una clase viene dada por la siguiente tabla:

Calificaciones 1 2 3 4 5 6 7 8 9
Número de alumnos 2 2 4 5 8 9 3 4 2

Primero se hallan las frecuencias absolutas acumuladas Ni. Así, aplicando la formula asociada a la mediana para n impar, se obtiene X(39 + 1) / 2 = X20.

  • Ni-1< n/2 < Ni = N19 < 19.5 < N20

Por tanto la mediana será el valor de la variable que ocupe el vigésimo lugar.En este ejemplo, 21 (frecuencia absoluta acumulada para Xi = 5) > 19.5 con lo que Me = 5 puntos, la mitad de la clase ha obtenido un 5 o menos, y la otra mitad un 5 o más.

Ejemplo 2 : Cantidad (N) par de datos

Las calificaciones en la asignatura de Matemáticas de 38 alumnos de una clase viene dada por la siguiente tabla (debajo):

Calificaciones 1 2 3 4 5 6 7 8 9
Número de alumnos 2 2 4 5 6 9 4 4 2
xi fi Ni+w
1 2 2
2 2 4
3 4 8
4 5 13
5 6 19 = 19
6 9 28
7 4 32
8 4 36
9 2 38

Primero se hallan las frecuencias absolutas acumuladas Ni. Ni. Así, aplicando la fórmula asociada a la mediana para n par, se obtiene Formula: X = n / 2 = = > X = (38 / 2) = > X = 19 (Donde n= 38 alumnos divididos entre dos).

  • Ni-1< n/2 < Ni = N18 < 19 < N19

Con lo cual la mediana será la media aritmética de los valores de la variable que ocupen el decimonoveno y el vigésimo lugar. En el ejemplo el lugar decimonoveno lo ocupa el 5 y el vigésimo el 6 con lo que Me = (5+6)/2 = 5,5 puntos, la mitad de la clase ha obtenido un 5,5 o menos y la otra mitad un 5,5 o más.

Ejemplo para datos agrupados

Entre 1.70 y 1.80 hay 3 estudiantes.
Entre 1.60 y 1.70 hay 5 estudiantes.
Entre 1.50 y 1.60 hay 2 estudiantes.

Mediana= 1.60 + \left( \frac{(10/2)-3}{5} \right)0.1=1.64

Método de cálculo general

xi fi Ni
[x11-x12]
f1
N1
.
.
.
.
.
.
.
.
N(i-2)
[x(i-1)1-x(i-1)2]
f(i-1)
f(i-1)-N(i-2)=N(i-1)
[xi1-xi2]
fi
fi-Ni-1=Ni
[x(i+1)1-x(i+2)2]
f(i+1)
f(i+1)-Ni=N(i+1)
.
.
.
.
.
.
.
.
.
[xM1-xM2]
fM
fM-N(M-1)=NM

Consideramos:

- x11 valor mínimo< Entonces:

Mediana= x_{i1} + \left( \cfrac{(N_M/2)-N_{i-1}}{f_i} \right).(x_{i2}-x_{i1})

Método proyectivo

Con base en el método proyectivo, se puede obtener la mediana para datos agrupados de la siguiente forma:

1. Tomar el número total de frecuencias y dividirlo entre dos.
2. Restar a ese número el total de frecuencias de las clases anteriores a la clase mediana.
3. Usar el número obtenido para hacer un cambio del doble superior de escala entre las frecuencias de la clase mediana y sus rangos para obtener la distancia parcial
4. Sumamos la distancia parcial obtenida a el límite inferior de la clase.

Usando el ejemplo anterior:
Desarrollomediana.jpg

1. El número total de frecuencias es de; (3+5+2)/2 = 10/2 = 5
2. El total de frecuencias anteriores es 2; (5 - 2) = 3
3. Hacemos el cambio de escalas:

\ 3:5::x:0.10

Resolviendo:

\ x= \frac{(0.10)(3)}{5}=0.06 la mediana es la suma de todos los datos dividido entre el número de datos

4. Se suma la distancia parcial al límite inferior:

\ Mediana = 0.06 + 1.60 = 1.66

Véase también

Enlaces externos


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Mediana — El término mediana puede referirse a: Mediana (estadística), el valor de la variable que deja el mismo número de datos antes y después que él. Mediana (geometría), la línea que une cualquier vértice de un triángulo con el centro del lado opuesto …   Wikipedia Español

  • Estadística robusta — Saltar a navegación, búsqueda La estadística robusta es una aproximación alternativa a los métodos estadísticos clásicos. El objeto es producir estimadores que no sean afectados por variaciones pequeñas respecto a las hipótesis de los modelos.… …   Wikipedia Español

  • Estadística descriptiva — Saltar a navegación, búsqueda La estadística descriptiva es una parte de la estadística que se dedica a analizar y representar los datos. Este análisis es muy básico, pero estudio. Aunque hay tendencia a generalizar a toda la población las… …   Wikipedia Español

  • Estadística no paramétrica — Saltar a navegación, búsqueda La estadística no paramétrica es una rama de la estadística que estudia las pruebas y modelos estadísticos cuya distribución subyacente no se ajusta a los llamados criterios paramétricos. Su distribución no puede ser …   Wikipedia Español

  • mediana — (en estadística) número que representa el valor medio de los valores de una muestra. En un número impar de valores dispuestos en orden ascendente, es el valor medio; en un número par de valores, es la media de los dos valores centrales.… …   Diccionario médico

  • Mediana — ► sustantivo femenino 1 GEOMETRÍA Recta que une el vértice de un triángulo con el punto medio del lado opuesto. 2 CONSTRUCCIÓN Muro o espacio que separa los dos sentidos de una carretera: ■ el fuerte viento hizo que el remolque chocara contra la… …   Enciclopedia Universal

  • Moda (estadística) — Para otros usos de este término, véase Moda (desambiguación). En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos. Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando… …   Wikipedia Español

  • Media (Estadística) — Saltar a navegación, búsqueda Para otros usos de este término, véase media. Consturcción geométrica para hallar las medias aritmética, geométrica, armónica y cuadrática de dos números a y …   Wikipedia Español

  • Media (estadística) — Para otros usos de este término, véase media. Construcción geométrica para hallar las medias aritmética, geométrica, armónica y cuadrática de dos números a y b. En matemáticas y estadística una media o promedio es …   Wikipedia Español

  • Asimetría estadística — En punteado negro: la media, en punteado gris: la moda …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.