Implicación


Implicación
Para otros usos de este término, véase compromiso.

Etimológicamente del latín “in ─ plicare”, significa el hecho de algo que está “plegado” o doblado en el interior de algo que oculta lo que hay en su interior que, por tanto, aunque está, no es visible o perceptible.

Su contraposición se manifiesta en el término latino “ex ─ plicare”. La “explicación” es el hecho de desplegar lo que está plegado; sacar al exterior, hacer visible, o comprensible, aquello que está “implicado” en el interior de algo que lo hacía oculto o no comprensible.

Contenido

La realidad del mundo como un orden implicado

La realidad del mundo no se nos manifiesta como un conjunto de cosas o de hechos aislados, sino que, por el contrario, aparece como un proceso, como un conjunto de hechos y de cosas relacionados entre sí de forma que unas cosas "dependen" de otras, unos hechos "suceden" a otros, o suceden "siempre y cuando" se dé un "orden" entre determinadas circunstancias etc. etc.

Estas relaciones en las que unas cosas dependen de otras, o unos hechos suceden a otros, solemos comprenderlas, de forma general, bajo la idea de causa.[1]

El conocimiento del mundo lo elaboramos a través de unos datos captados por los sentidos; y lo manejamos conceptual y lingüísticamente y lo comunicamos a los demás según interpretamos la realidad y "creemos" que conocemos el mundo como realidad.

Esta creencia en el modo de conocer el mundo como relación de causas, la expresamos en el pensamiento y el lenguaje mediante las oraciones condicionales que en lógica se formalizan lingüísticamente[2] como:

La cadena de causas y sus efectos constituyen una nueva causa con un efecto del conjunto: Causa y efecto paralelo

"Si llueve el suelo está mojado"

"Cuando llueve el suelo está mojado"

"Siempre que llueve el suelo está mojado"

"Llueve, luego el suelo está mojado"

"Llueve, por tanto, el suelo está mojado" etc.

Que de forma general vienen a decir que:

"El suelo está mojado porque llueve"

"La lluvia causa que el suelo esté mojado"

"El suelo está mojado a consecuencia de la lluvia"

"Todas las lluvias mojan el suelo"

Y cualquier otra expresión o enunciado que establezca como significado "unas relaciones semejantes".

En el cálculo lógico de deducción natural este tipo de expresiones se formalizan simbólicamente como:


A \rightarrow B


que se interpretan como más adelante se explica; siendo A causa o conjunto de causas y B efecto o conjunto de efectos.


Al percibir algunas cosas o algunos hechos, "esperamos", "creemos", que van a suceder otras; o "suponemos" que estas cosas suceden porque antes han sucedido otras. En otras palabras damos por supuesto que unas cosas implican otras y los hechos están implicados unos en otros.

Esta implicación de las cosas y los hechos del mundo suceden no de forma arbitraria sino de forma legal, conforme a leyes. El mundo se nos manifiesta conforme a unas «leyes naturales» según las cuales las cosas suceden así por "necesidad", porque tienen que ser así, y no de forma arbitraria, "por voluntad de los dioses" o el "azar".[3]

Al expresar nuestro conocimiento por medio del lenguaje, utilizamos unas reglas gramaticales y lógicas que, aunque no las conozcamos, las manejamos de forma inconsciente y natural. Pero mediante ellas, creemos que conocemos y expresamos la realidad del mundo.

Pensamos que el conocimiento, cuando es una interpretación adecuada de la realidad, es verdadero. Pero otras veces nos causa admiración cuando sentimos ignorancia.

Pues los hombres comienzan y comenzaron siempre a filosofar movidos por la admiración; al principio, admirados ante los fenómenos sorprendentes más comunes; luego avanzando poco a poco y planteándose problemas mayores, como los cambios de la luna y los relativos al sol, las estrellas y a la generación del universo. Pero el que se plantea un problema o se admira, reconoce su ignorancia, por eso también el que ama los mitos es en cierto modo filósofo, pues el mito se compone de elementos que dejan estupefacto. De suerte que, si filosofaron para huir de la ignorancia, es claro que buscaban el saber en busca del conocimiento, y no por ninguna utilidad
Aristóteles. Metafísica, 982,b.11-32. (sin subrayar en el original)


Cuando reflexionamos sobre el fundamento de nuestro conocimiento y que dicho conocimiento es producto de nuestra interactuación con la realidad, puesto que nosotros somos parte de la misma y del mismo proceso, esta reflexión es el fundamento del pensamiento racional que da lugar a la ciencia y a la filosofía.[4]

El conocimiento de la ciencia y de la reflexión filosófica supone una gran depuración del conocimiento vulgar. De ahí que la noción de causa, de implicación, de ley científica, la misma noción de experiencia en el contexto científico y filosófico, aunque tengan el mismo fundamento que la noción corriente, requiere un proceso de depuración o formalización para adecuar las nociones lo mejor posible al contenido experimental (que no es lo mismo que la experiencia) de las mismas[5]

El comprender la realidad del mundo en sus "implicaciones" se hace mediante las "explicaciones" de la ciencia.

La ciencia, por su parte, como pensamiento racional, se somete a unas reglas de razonamiento o funcionamiento de la razón, conocidas, elaboradas y formalizadas, que es lo que normalmente entendemos por lógica y método.[6]

En este artículo consideramos la "implicación" en su sentido meramente lógico. Reservando la explicación al ámbito de una lógica empírica, que habla del mundo de la experiencia conforme a un método científico y que es lo que consideramos como Ciencia.

La implicación lógica requiere algunas precisiones para su correcta comprensión:

Implicación y Condicional

Aunque en el lenguaje ordinario no suele tener importancia esta distinción, en su sentido lógico y científico las diferencias pueden tener un sentido importante.

Tanto el condicional como la implicación en el cálculo lógico se expresan según el esquema A → B, que puede leerse de dos formas:


Se simboliza Se lee Ejemplo
A \rightarrow B Si   A    entonces    B "Si hoy es Martes entonces mañana es Miércoles".
A \rightarrow B A    implica    B "Hoy es Martes", por tanto "mañana es Miércoles".


En el primer caso hemos leído un condicional. En el segundo una implicación.

1.- Observamos que, en su escritura, la expresión lingüística difiere de forma fundamental en el uso de las comillas:

"Si A entonces B" es una y única proposición y como tal una única afirmación; por tanto, su interpretación lógica tiene dos valores posibles de verdad, es decir, puede ser verdadera o falsa. Su tabla de valores de verdad nos indica que solamente es falsa en el caso en que “A” sea verdadera y “B” sea falsa; en los demás casos posibles es verdadera. Pero a falta de información complementaria no podemos afirmar ni su verdad ni su falsedad.

En "A implica B" hay dos proposiciones y, por tanto, dos afirmaciones.[7] Pero el valor de cada una es diferente. De modo que afirmando "A", como sentencia verdadera en su contenido semántico, se exige la afirmación de "B" como sentencia verdadera en su contenido semántico. Dicho de otra manera, la afirmación de la segunda depende de la validez de la primera.

2.- Lo condicional es una afirmación hipotética sobre una relación meramente formal. “si se da una condición (antecedente), tiene que darse también lo condicionado (consecuente)”. El hecho de que no se dé la condición no afecta al hecho de que se dé o no se dé lo condicionado.

En la implicación, sin embargo, la relación se establece sobre sentencia en su condición de "contenido semántico". A debería tomarse como afirmación sobre "A"; y B como afirmación sobre "B".

Mientras el condicional es una relación meramente sintáctica, la implicación exige además una relación semántica. En este segundo caso la condición responde a un contenido material.

Así pues implicación debe entenderse como:

La verdad de A exige, o lleva implícita, es decir implicada, la verdad de B.

Lo que nos viene a sugerir que:


Se debe reservar la implicación sólo a los casos en los que la condición es siempre verdadera


Un ejemplo que solemos usar en el lenguaje ordinario puede servir de de ejemplo para lo que intentamos decir.

Cuando alguien está contando algo que el oyente considera una fantasía que no puede ser admitida de ningún modo como verdadera, es frecuente, en español, que el oyente manifieste su incredulidad diciendo: “Si esto es verdad, yo soy el Papa de Roma”.

Si interpretamos dicha expresión como un condicional, entonces la proposición como tal es lógicamente verdadera, puesto que, partiendo de la falsedad del antecedente, el valor de verdad del consecuente no incide en la verdad del condicional como verdad formal, según las tablas de verdad.

Pero si lo interpretamos como una implicación: “Lo que dices” implica que “yo soy el Papa de Roma”, entonces no tiene sentido alguno. Porque “Lo que dices” (como significado) no tiene nada que ver conmigo ni con el Papa de Roma (como significado), y es por tanto un absurdo.

"Si esto es un triángulo entonces la suma de sus ángulos tendrá que ser 180º", es una afirmación hipotética, por tanto débil, mínima, similar en su forma a la anterior. Mientras que "Esto es un triángulo implica que (por tanto) la suma de sus ángulos sea (son) 180º", es una afirmación plena en su contenido.

Para la prueba argumentativa, o derivación formal en un cálculo, basta la afirmación mínima hipotética, por lo que en la práctica del cálculo formal lógico no es necesario tener en cuenta esta distinción, no así en las afirmaciones con pretensión de verdad cuando hablamos del mundo.


Condicional e implicación
Condicional "Si llueve el suelo está mojado" Afirmación formal e hipotética, que no habla del mundo
Implicación "Llueve, por tanto el suelo está mojado" Afirmación con contenido de verdad y habla del mundo.

Equivale materialmente a la afirmación doble: "Llueve" y "el suelo está mojado"

Implicación lógica

La implicación supone un contenido semántico además de formal.

Un sistema lógico se define como una estructura compuesta por un lenguaje formal junto con una relación binaria de consecuencia semántica (o implicación lógica) o una relación binaria de consecuencia sintáctica ├ (derivabilidad), o ambas. La relación de consecuencia semántica se define con respecto a una clase de estructuras y la relación de consecuencia sintáctica, con respecto a un sistema de pruebas.[8]


El cálculo lógico formal sirve para establecer una relación, o derivación entre una condición y su condicionado, o el establecimiento de una afirmación hipotética. Si las premisas son verdaderas lo es también la conclusión.

Cuando el cálculo tiene una intención argumentativa en su contenido semántico, entonces partimos de un contenido material afirmado como verdadero, cuya verdad es condición necesaria de la verdad de lo condicionado en la conclusión, como implicación.

Normalmente el uso lógico del pensamiento es argumentativo en este sentido, y por ello esta distinción no tiene mayor importancia en la vida ordinaria, y suele confundirse con facilidad.

La implicación en la lógica actual

Filón de Megara, hacia el 300 a. de C. estimaba el condicional tal como hoy día se define la función de condicional en las tablas de verdad.

Diodoro de Cronos en la misma época, no aceptaba más que la condición en el sentido de implicación.

Los escolásticos distinguieron entre proposición «formalmente hipotética», la condición y «materialmente hipotética», la implicación, y así ha perdurado en la filosofía tradicional.

En el siglo XIX Frege, Peirce, Russell y, en general los lógicos matemáticos, aceptaron el sentido de Filón, mientras que Clarence Irving Lewis (1883-1964) ha defendido la postura de Diodoro.

Para Lewis la implicación como tal se refiere a la “inferencia” o “prueba”. La condición formal, en cambio, únicamente muestra “lo que ocurriría o podría ocurrir si una proposición falsa fuera verdadera”, lo que abre esta problemática a la cuestión de la «modalidad», (necesidad-contigencia, posibilidad-imposibilidad), especialmente estudiada por este autor, que ha dado lugar a la Lógica modal, de gran desarrollo actualmente.

Un ejemplo explica bien lo que se quiere decir.

El ejemplo antes citado "si esto que dices es verdad, yo soy el Papa de Roma" (A → B), lo consideramos como una afirmación con un contenido de verdad realmente débil, y prácticamente sin sentido.

Sin embargo "si hubieras estado aquí, el asunto se habría resuelto" (A → B), tiene la misma forma sintáctica, pero su contenido semántico de verdad no es comparable al anterior.

Si intentamos encontrar el sentido de verdad contenido en dicha afirmación condicional, observamos:

a) La afirmación parte del conocimiento del contenido semántico falso del antecedente, lo que se manifiesta lingüísticamente en el uso del modo subjuntivo. "Si hubieras estado" → "no has estado".

b) El consecuente es considerado dentro de un "mundo posible", que sabemos que no ha sido real, pero podemos pensar en él como posible,. "Se habría resuelto" → "habría sido posible que se resolviera".

De la misma forma podemos expresar un contenido semántico de verdad basado en la necesidad, como en el caso del triángulo antes citado, o en la afirmación de un deseo, la afirmación de una prescripción etc.

Tal es el campo de la modalidad y la lógica modal.

Véase también

Notas y referencias

  1. Faerna García-Bermejo A.M. Pragmatismo conceptualista: la Teoría del Conocimiento de C.I.Lewis. 1994. Tesis Doctoral. UCM (Universidad Complutense de Madrid), págs. 61-62
  2. En español. La formalización lógica no depende de ninguna lengua. Estamos refiriéndonos a diversas formas dentro de la lengua española
  3. No obstante la necesidad de explicación en el hombre es tan importante que, a falta de "explicaciones mejores, los hombres imaginaron desde el comienzo explicaciones mágicas o divinas que justificaran fenómenos que de todo punto desbordaban su capacidad de "comprensión. Por ello Aristóteles considera que los mitos son un primer paso para la superación de la ignorancia porque intentan justificar las cosas que producen admiración.Aristóteles. Metafísica, 982,b.11-32.
  4. No vacilemos en extremar nuestra tesis para que se vuelva bien nítida... la aritmética no es, como tampoco la geometría, una promoción natural de la razón inmutable. La aritmética no está fundada en la razón. Es la doctrina de la razón la que está fundada en la aritmética elemental. Antes de saber contar apenas sabíamos qué era la razón. En general, el espíritu debe plegarse a las concidiones del saber.
    Bachelard, G. La filosofía del No: Ensayo de una filosofía del nuevo espíritu científico. B. Aires. 1973. Amorrortu
  5. Faerna García-Bermejo A.M. Pragmatismo conceptualista: la Teoría del Conocimiento de C.I.Lewis. 1994. Tesis Doctoral. UCM (Universidad Complutense de Madrid), págs. 63-64. Cfr. Evidencia (filosofía)
  6. No en vano es fundamental en cualquier ciencia su metodología y no es casual que tantas ciencias acaben en "...lógica"
  7. Equivale a afirmar A & B, dado que se afirma la primera y dependiendo de ella la segunda tambén.
  8. Proyecto de investigación: El concepto de consecuencia lógica; modelos y hechos modales. A.E.Barrio. Instituto de Filosofía. Universidad de Buenos Aires.

Bibliografía

  • Bohm, D. (1988). La totalidad y el orden implicado. Barcelona: Kairós. 
  • Gabbay, D. (1994). What is a Logical System?. Oxford UP. 
  • Lewis, Clarence Irving (1960). A Survey of Symbolic Logic. New York: Dover Publications. 
  • Ferrater Mora, José (1979). Diccionario de Filosofía. Madrid: Alianza Editorial. 

Wikimedia foundation. 2010.

Sinónimos:

Mira otros diccionarios:

  • implicación — sustantivo femenino 1. (no contable) Acción y resultado de implicar, de participar: Mi marido rechazó la implicación de su hermano en el negocio. Sinónimo: participación. 2. Área: derecho Participación en un delito: La policía lo detuvo por su… …   Diccionario Salamanca de la Lengua Española

  • implicación — (Del lat. implicatĭo, ōnis). 1. f. Acción y efecto de implicar. 2. Contradicción, oposición de los términos entre sí. 3. Repercusión o consecuencia de algo …   Diccionario de la lengua española

  • implicación — (Del lat. implicatio, onis.) ► sustantivo femenino 1 Acción y efecto de implicar: ■ la nueva norma no tiene implicaciones políticas. 2 DERECHO Participación en un delito: ■ el fiscal demostró su implicación en el atraco al furgón. 3 LÓGICA… …   Enciclopedia Universal

  • implicación — {{#}}{{LM I21103}}{{〓}} {{SynI21642}} {{[}}implicación{{]}} ‹im·pli·ca·ción› {{《}}▍ s.f.{{》}} {{<}}1{{>}} Participación, enredo o complicación en un asunto, especialmente en un delito. {{<}}2{{>}} Repercusión o consecuencia: • La declaración del… …   Diccionario de uso del español actual con sinónimos y antónimos

  • implicación — (f) (Intermedio) resultado o consecuencia de una acción previa Ejemplos: Debes tener en cuenta las implicaciones de tal comportamiento para tu futuro. Esta decisión del gobierno tendrá implicaciones graves para el país. Sinónimos: participación… …   Español Extremo Basic and Intermediate

  • implicación — s f 1 Acto de implicar o implicarse: una implicación lógica, las implicaciones de un negocio 2 Resultado o consecuencia necesaria de algo: las implicaciones de un acuerdo …   Español en México

  • implicación — Sinónimos: ■ participación, intervención, connivencia, complicidad …   Diccionario de sinónimos y antónimos

  • implicación de la familia — Clasificación de intervenciones de enfermería definida como facilitar la participación de la familia en el cuidado emocional y físico del paciente. Véase también clasificación de intervenciones de enfermería. Diccionario Mosby Medicina,… …   Diccionario médico

  • Implicación en un proyecto — La implicación en un proyecto , según la International Proyect Management Association (IPMA), es la aceptación del compromiso que conlleva un proyecto por parte del director del proyecto, del personal interno y del personal asociado.[1] El… …   Wikipedia Español

  • Paradojas de la implicación material — Saltar a navegación, búsqueda Las paradojas de la implicación material son un conjunto de fórmulas de la lógica proposicional, reconocidas como verdades lógicas, pero que golpean al sentido común como cuestionables, o incluso absurdas.[1] Algunas …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.