Secuencia principal

Secuencia principal
Diagrama Hertzsprung-Russell.

Se denomina secuencia principal a la región del diagrama de Hertzsprung-Russell en la que se encuentran la mayor parte de las estrellas. Por esta razón, estas estrellas son llamadas de secuencia principal. Las estrellas más frías de esta banda o curva son las enanas rojas, de masa baja, mientras que las estrellas que se ubican hacia las altas temperaturas son las supermasivas gigantes azules. El diagrama H-R es un diagrama estadístico que muestra la temperatura efectiva de la estrellas en función de su luminosidad. Otras regiones del diagrama están ocupadas por estrellas gigantes de corta vida y evolución rápida o por enanas blancas muy estables.

Contenido

Características

Las estrellas se sitúan en esta región debido a que tanto el tipo espectral, que se puede relacionar con la temperatura, como la luminosidad de una estrella dependen de su masa (L \propto M^3). Pero esto es cierto sólo en orden cero, es decir durante la etapa de fusión del hidrógeno.

La mayoría de las estrellas permanecen la mayor parte de su vida "activa" sobre la secuencia principal evolucionando lentamente en un proceso de contracción gravitatoria cuasiestático. La secuencia principal es, en realidad, una región difusa debido a la variedad de masas, a la presencia de compañeras cercanas, campos magnéticos, a la rotación y a indeterminaciones observacionales, tales como la distancia y correcta evaluación de la luminosidad estelar. La composición química de las estrellas es, también, uno de los factores más importantes a la hora de ubicar una estrella en el diagrama. Existe, de hecho, toda una gama de estrellas pobres en metales que se desplazan a lo largo del diagrama distribuyéndose en grupos suficientemente diferenciados y que reciben el nombre de subenanas y subgigantes, según se trate de estrellas en la etapa de fusión del hidrógeno o de elementos más pesados, respectivamente.

En ocasiones, los astrónomos hacen referencia a la secuencia principal de edad 0 o ZAMS (zero age main sequence, en inglés). La ZAMS es una línea teórica, calculada a partir de modelos numéricos realizados por ordenador y que simulan el comportamiento de diferentes estrellas de dada masa cuando comienzan a quemar el hidrógeno. La mayoría de las estrellas ha abandonado ya la ZAMS porque ha transcurrido parte de su vida. Pero a medida que miramos las estrellas más masivas, éstas aparecen más cercanas a la ZAMS pues sus vidas son relativamente breves. Esto se puede observar en la menor dispersión de puntos en la zona superior izquierda del diagrama, es decir, la que ubica a las gigantes azules supermasivas.

El Sol es una estrella de secuencia principal, en la que ha permanecido durante 4.500 millones de años, y permanecerá en ella todavía otros 4.500 millones de años más. Cuando el suministro de hidrógeno en el núcleo finalice, el Sol comenzará a expandirse y su superficie se enfriará. Como resultado, se convertirá en una gigante roja.

En el caso de las estrellas de baja masa los conocimientos sobre su evolución son puramente teóricos, porque sus secuencias principales duran más que la edad actual del universo, así que ninguna de las estrellas en este rango de masas ha evolucionado lo suficiente como para tener evidencias observacionales. Se cree que su evolución procederá como para las estrellas de masa mediana, a excepción de que la temperatura en su interior nunca se elevará lo suficiente como para llegar a la ignición del helio. El hidrógeno continuará quemándose en una capa, pero eventualmente se agotará. La estrella entonces simplemente se hará más y más fría, terminando después de unos 50.000 millones de años o más como una enana negra.

Datos de la secuencia principal

Esquema de las diferentes estructuras presentes en las estrellas de la secuencia principal. Estas pueden ser muy variadas. (Ver:Radiación y convección de la secuencia principal.) Los valores del diagrama están dados en masas solares. Los tamaños no están a escala, son meramente orientativos.

Esta tabla muestra los valores típicos de las estrellas a lo largo de la secuencia principal. La luminosidad (L), el radio (R), y la masa (M) se expresan en relación al Sol. Los valores actuales para una estrella pueden variar en torno a un 20-30%. El color de la columna del tipo espectral da una representación aproximada del color fotográfico de la estrella.

Tipo
espectral
Radio Masa Luminosidad Temperatura
R/RSol M/MSol L/LSol K
O2 19 120 2 000 000 49 000
O5 10 35 225 000 39 000
B0 8,0 17 40 000 29 000
B5 5,0 5,4 1 200 15 200
A0 3,6 2,8 100 9 600
A5 3,2 2,4 55 8 700
F0 2,7 1,85 18 7 200
F5 2,0 1,45 6,0 6 400
G0 1,24 1,12 1,24 6 000
G2 1,00 1,00 1,00 5 800
G5 0,88 0,90 0,64 5 500
K0 0,78 0,80 0,37 5 150
K5 0,60 0,60 0,15 4 450
M0 0,34 0,40 0,025 3 850
M5 0,18 0,12 0,004 3 200

La secuencia principal como fase evolutiva

La secuencia principal es la fase en que una estrella quema hidrógeno en su núcleo mediante fusión nuclear. Una vez instalada en la secuencia principal la estrella se compone de un núcleo donde tiene lugar la fusión del hidrógeno al helio y un manto que transmite la energía generada hacia la superficie. La mayor parte de las estrellas pasan el 90% de su vida, aproximadamente, en la secuencia principal del diagrama de Hertzsprung-Russell. En esta fase las estrellas consumen su combustible nuclear de manera gradual pudiendo permanecer estables por periodos de tiempo de 2-3 millones de años, en el caso de las estrellas más grandes y calientes, a miles de millones de años si se trata de estrellas de tamaño medio como el Sol, o hasta decenas o incluso centenares de miles de millones de años en el caso de estrellas de poca masa como las enanas rojas. Lentamente, la cantidad de hidrógeno disponible en el núcleo disminuye, con lo que ésta ha de contraerse para aumentar su temperatura y poder detener su colapso gravitacional. Las temperaturas del núcleo estelar más elevadas permiten fusionar, progresivamente, nuevas capas de hidrógeno sin procesar. Por este motivo las estrellas aumentan su luminosidad a lo largo de la secuencia principal de forma paulatina y regular. Cuando el hidrógeno del núcleo finalmente se agota la estrella sufre unas rápidas transformaciones que la convierten en gigante roja. A lo largo de toda esta etapa solamente habrá procesado el 10% de su masa.

Reacciones nucleares en la secuencia principal

En una estrella de secuencia principal distinguimos dos modos de quemar el hidrógeno del núcleo. Se podría pensar que la nucleosíntesis del hidrógeno en helio se realiza mediante el choque de cuatro protones. Pero este tipo de choques múltiples son mucho más improbables que las colisiones por parejas. Por eso la combustión se realiza mediante cadenas de reacciones que conducen al helio-4. Lo que determinará a través de qué cadena o ciclo quema su hidrógeno será la masa de la propia estrella, pues el valor de ésta determina las condiciones de presión y temperatura de su núcleo.

Cadenas PP ( M < 1,5 MSol )

Artículo principal: Cadenas PP

Las cadenas protón - protón se llaman así porque son aquel conjunto de reacciones que parten de la fusión de un ion de hidrógeno con otro igual, o lo que es lo mismo, de un protón con otro protón. Se distinguen tres cadenas distintas. La PPI, PPII y la PPIII. Cada una con una probabilidad de ocurrencia distinta según la temperatura del núcleo. La fusión del hidrógeno mediante las cadenas PP se da en todas las estrellas pero en las más masivas su contribución es mínima. Dicha reacción solo predomina hasta las 1,5 masas solares. Por debajo de las 0,08 masas solares no existe fusión del hidrógeno y tendremos una estrella abortada, es decir una enana marrón. En el diagrama que viene a continuación salen representadas las tres cadenas PP. También se citan los porcentajes de ocurrencia en el Sol y se indica el balance energético de cada reacción. Las proporciones de las tres cadenas varían según la temperatura.

PPI: 26.20MeV. 90% Dominante desde los 10 hasta los 14 MK (Por debajo de 10MK no hay apenas fusión.)
PPII: 25.67MeV. 10% Dominante entre los 14 y los 23 MK
PPIII: 19.20MeV. 0.001% Dominante a partir de los 23 MK
El núcleo del Sol tiene una temperatura media menor que 14 megakelvins por lo que es lógico que la rama mayoritaria sea la PPI.

CadenaPP.png

De todas las reacciones que se dan en el proceso la que tiene el tiempo característico más grande recibe el nombre de reacción limitante. Esto es porque el tiempo de la reacción más lenta es la que marca el tiempo de todo el proceso. En el caso de las cadenas PP la reacción limitante es la primera de todas, la combinación de los dos protones.
¹H + ¹H → ²H + e+ + ν (τ ~ 7·109 años)

CicloCNO.png

Ciclo CNO ( M > 1.5 MSol )

Artículo principal: Ciclo CNO

Las siglas del ciclo CNO hacen referencia a los elementos que intervienen en sus reacciones, el carbono, el nitrógeno y el oxígeno. Este conjunto de reacciones usa el carbono-12 como catalizador nuclear. Es decir que interviene en la reacción inicial para luego ser devuelto como producto final, pudiendo volver a utilizarse en un nuevo ciclo. En el diagrama se muestra un segundo canal de salida con una probabilidad de ocurrencia de una vez cada 10.000 reacciones, pero el nitrógeno-14 que da como subproducto puede, igualmente, ser reprocesado. La reacción más lenta es la del nitrógeno-14 más un protón que arroja un tiempo limitante de 3·108 años, un orden de magnitud inferior al de las cadenas PP. Esto hace que el C-12 del núcleo vaya pasando a N-14 hasta llegar a un equilibrio. El hecho que se utilice como catalizador al carbono hace que el ciclo CNO sea, hasta cierto punto, dependiente de la metalicidad de la estrella. A las primeras estrellas que se formaron en el universo les fue imposible fusionar el hidrógeno mediante este ciclo de reacciones por lo que, es de suponer, que tuvieran la masa que tuvieran todas ellas fusionarían su combustible mediante cadenas PP lo que haría que duraran algo más de tiempo que las supergigantes actuales.

Comparación entre las cadenas PP y el ciclo CNO

En el ciclo CNO los neutrinos se llevan más energía que en las cadenas PP por lo que εPP > εCNO para cada núcleo de helio producido.

Cadenas PP: Tc < 2·107K || M < 1,5MSol || εPP~ ρT4 || τ ~ 7·109 años
Ciclo CNO: Tc > 2·107K || M > 1,5MSol || εCNO~ ρT17 || τ ~ 3·108 años

PPvsCNO.png

El ciclo CNO es mucho más dependiente de la temperatura que las cadenas PP por lo que a temperaturas elevadas (a partir de 2·107K) pasa a ser la reacción dominante y la que aporta el grueso de la energía de la estrella algo que sólo se da a partir de 1,5 masas solares. Debido a esa gran dependencia con la temperatura los núcleos CNO son pequeños y convectivos mientras que los PP son mayores y radiativos. El menor tiempo limitante de las estrellas CNO también hace que consuman en mucho menos tiempo su hidrógeno.

Como se ve en el diagrama adjunto, el ciclo CNO empieza a producirse a temperaturas en torno a los 12,5 millones de grados pero no es hasta los 20 millones cuando, realmente, domina. En el Sol dominan totalmente las cadenas PP siendo así que el 98,5% de la energía generada es a través de dicho mecanismo, mientras que sólo el 1,5% restante se produce gracias al ciclo CNO. Pero conque nuestra estrella fuera un 20% más masiva, la energía ya provendría, mayoritariamente, de las reacciones CNO. Obsérvese en el gráfico adjunto que la escala vertical, que representa la energía, es logarítmica.

Posición de la secuencia principal en el diagrama de Hertzsprung-Russell

Un vistazo al diagrama de Hertzsprung-Russell revela que la secuencia principal cruza el diagrama aproximadamente en una diagonal arriba izquierda a abajo derecha. Este comportamiento se puede entender haciendo unas simplificaciones a las ecuaciones de estructura estelar. De ellas se pueden derivar las relaciones

L \propto M^3

y

R \propto M^{3/4}.

Éstas caracterizan de manera aproximada las estrellas de la secuencia principal. Además se pueden derivar

L \propto R^4.

y eventualmente

L \propto T_\text{ef}^8.

En el diagrama de Hertzsprung-Russell aparecen en la abscisa y ordenada los logaritmos de Teff y L, repectivamente. Tomando el logaritmo de la última relación se obtiene:

log L = 8log Tef

es decir una línea recta con pendiente 8, la secuencia principal.[1]

Referencias

  1. Weigert, Afred; Wendker, Heinrich J.; Wisotzki, Lutz (2004) (en alemán). Astronomie und Astrophysik: Ein Grundkurs (4 edición). Wiley-VCH. ISBN 3527403582. 


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Secuencia principal — Se denomina secuencia principal a la región del diagrama de Hertzsprung Russell en la que se encuentran la mayor parte de las estrellas. Las estrellas que se ubican en esta banda son llamadas estrellas de la secuencia principal. Las más frías de… …   Enciclopedia Universal

  • Estrella pre-secuencia principal — Saltar a navegación, búsqueda Una estrella pre secuencia principal (estrella u objeto PMS, acrónimo del inglés pre main sequence star) es una estrella que está en la fase evolutiva previa a la secuencia principal. Se dividen en estrellas T Tauri… …   Wikipedia Español

  • Estrella blanca de la secuencia principal — Saltar a navegación, búsqueda Vega, ejemplo de estrella blanca de la secuencia principal. En astronomía, se denomina estrella blanca de la secuencia principal a una estrella de tipo espectral A y de clase de luminosidad V. Este tipo de estrellas… …   Wikipedia Español

  • Secuencia — El término secuencia puede referirse a: En matemáticas: Sucesión matemática Secuencia entera En biología: la secuencia de ADN la técnica de secuenciación de ADN la secuencia de aminoácidos la secuencia Alu la secuencia reguladora la secuencia… …   Wikipedia Español

  • Secuencia de apertura — Una secuencia de apertura[nota 1] es un método usado en películas o programas de televisión para presentar su título, reparto principal o los miembros de producción usando recursos visuales y auditivos. No debe ser confundida con los créditos de… …   Wikipedia Español

  • Secuencia de apertura de Los Simpson — La serie estadounidense de animación Los Simpson se caracteriza por poseer un sello propio que se muestra en cada capítulo. La secuencia de apertura de los episodios es fundamentalmente siempre la misma, pero con ligeros cambios. Contenido 1… …   Wikipedia Español

  • Secuencia (música) — Secuencias son composiciones musicales formadas por más de una frase melódica que se repiten dos veces, al menos una debe repetirse; el texto, si existe, siempre es independiente de la melodía. Se puede decir que son una forma musical derivada… …   Wikipedia Español

  • Secuencia pseudoaleatoria — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Secuencia de ADN — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Secuencia Alu — Este artículo o sección sobre biología necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 1 de diciembre de 2009. También puedes… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”