Energía potencial


Energía potencial

Energía potencial

Los carros de una montaña rusa alcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienza a ser convertida a energía potencial gravitacional, pero, si se asume una fricción insignificante y otros factores de retardo, la cantidad total de energía en el sistema sigue siendo constante.

La energía potencial es la capacidad que tienen los cuerpos para realizar un trabajo (\ W), dependiendo de la configuración que tengan en un sistema de cuerpos que ejercen fuerzas entre sí. Puede pensarse como la energía almacenada en un sistema, o como una medida del trabajo que un sistema puede entregar. Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

Contenido

Energía potencial asociada a campos de fuerzas

La energía potencial puede definirse solamente cuando la fuerza es conservativa, es decir, que cumpla con alguna de las siguientes propiedades:

  • El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
  • El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
  • Cuando el rotor de F es cero.

Se puede demostrar que todas las propiedades son equivalentes (es decir, que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial se define como

U_B - U_A = -\int_A^B \mathbf{F} \cdot d\mathbf{r} .

De la definición se sigue que si la energía potencial es conocida, se puede obtener la fuerza a partir del gradiente de U:

 \mathbf{F} = - \nabla U .

También puede recorrerse el camino inverso: suponer la existencia una función energía potencial y definir la fuerza correspondiente mediante la fórmula anterior. Se puede demostrar que toda fuerza así definida es conservativa.

Evidentemente, la forma funcional de la energía potencial depende de la fuerza de que se trate; así, para el campo gravitatorio (o eléctrico), el resultado del producto de las masas (o cargas) por una constante dividido por la distancia entre las masas (cargas), por lo que va disminuyendo a medida que se incrementa dicha distancia.

Energía potencial gravitatoria

La fuerza gravitatoria mantiene a los planetas en órbita en torno al sol

Este tipo de energía está asociada con el grado de separación entre dos cuerpos, los cuales se atraen mediante fuerza gravitacional.

  • Caso general. La energía potencial gravitatoria VG de una partícula material de masa m situada dentro del campo gravitatorio terrestre viene dada por:
 V_G(r) = -\frac{GMm}{r}

Donde:
 r\,, distancia entre la partícula material y el centro de la Tierra.
 G \,, constante universal de la gravitación.
 M \,, masa de la Tierra.

Esta última es la fórmula que necesitamos emplear, por ejemplo, para estudiar el movimiento de satélites y misiles balísticos

  • Cálculo simplificado. Cuando la distancia recorrida por un móvil h es pequeña, lo que sucede en la mayoría de las aplicaciones usuales (tiro parabólico, saltos de agua, etc.), podemos usar el desarrollo de Taylor a la anterior ecuación. Así si llamamos r a la distancia al centro de la tierra, R al radio de la Tierra y h a la altura sobre la superficie de la Tierra tenemos:


 V_G(r) = -\frac{GMm}{(R+h)}
\approx -\frac{GMm}{R} +\frac{GM}{R^2}mh =
 -\frac{GMm}{R} + mgh


Donde hemos introducido la aceleración sobre la superfice:

 g= \frac{GM}{R^2} \approx 9,80665\ \frac{m}{s^2}

Por tanto la variación de la energía potencial gravitatoria al desplazarse un cuerpo de masa m desde una altura h1 hasta una altura h2 es:

 \Delta V_G \approx mg(h_2-h_1)


Dado que la energía potencial se anula cuando la distancia es infinita, frecuentemente se asigna energía potencial cero a la altura correspondiente a la del suelo, ya que lo que es de interés no es el valor absoluto de V, sino su variación durante el movimiento.

Así, si la altura del suelo es h1 = 0, entonces la energía potencial a una altura h2 = h será simplemente VG = mgh.

Energía potencial electrostática

La energía potencial electrostática de un sistema formado por dos partículas de cargas q y Q situadas a una distancia r una de la otra es igual a:

 V_E(r) = K \frac{Qq}{r}

Siendo K una constante universal o constante de Coulomb cuyo valor aproximado es 9*109 (voltios·metro/culombio).

Una definición de energía potencial eléctrica sería la siguiente: cantidad de trabajo que se necesita realizar para acercar una carga puntual de masa nula con velocidad constante desde el infinito hasta una distancia r de una carga del mismo signo, la cual utilizamos como referencia. En el infinito la carga de referencia ejerce una fuerza nula.

Energía potencial elástica

Artículo principal: Energía de deformación

La energía elástica o energía de deformación es el aumento de energía interna acumulado en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación.

  • Potencial armónico (caso unidimensional), dada una partícula en un campo de fuerzas que responda a la ley de Hooke (F= -k|r|) siendo k la constante de dicho campo, su energía potencial será V = 1/2 K |r|².
  • Energía de deformación (caso general), en este caso la función escalar que da el campo de tensiones es la energía libre de Helmholtz por unidad de volumen f que representa la energía de deformación. En función de las deformaciones εij y la temperatura la energía libre de un cuerpo deformado viene dada por:

(1) \begin{cases} f(\epsilon_{ij},T) = \lambda(T) \left(\sum_{i=1}^{3}\epsilon_{ii}\right)^2 + 2\mu(T) \sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{ij}^2 \\
f(\epsilon_{ij},T) =\lambda(T) \left(\epsilon_{xx}+\epsilon_{yy} +\epsilon_{zz}\right)^2+ 2\mu(T) \left(\epsilon_{xx}+\epsilon_{xy}+ ... +\epsilon_{zy}+\epsilon_{zz}\right)^2 \end{cases}

Donde \lambda(T), \mu(T) \, son constantes elásticas llamadas coeficientes de Lamé, que pueden depedender de la temperatura, y están relacionadas con el módulo de Young y el coeficiente de Poisson mediante las relaciones algebraicas:

 \lambda=\frac{\nu E}{(1+\nu)(1-2\nu)} \qquad \mu=\frac{E}{2(1+\nu)}


A partir de esta expresión (1) del potencial termodinámico de energía libre pueden obtenerse las tensiones a partir de las siguientes relaciones termodinámicas:

 \sigma_{ij} = \left ( \frac{\partial f}{\partial \epsilon_{ij}} \right)_S = \frac{\nu E}{(1+\nu)(1-2\nu)}\left(\sum_{k=1}^{3}\epsilon_{kk}\right)+\frac{E}{(1+\nu)} \epsilon_{ij}


Estas últimas ecuaciones se llaman ecuaciones de Lamé-Hooke y escritas más explícitamente en forma matricial tienen la forma:


\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\frac{E}{1+\nu}
\begin{pmatrix}
  1+\alpha & \alpha & \alpha & & & \\
  \alpha & 1+\alpha & \alpha & & & \\
  \alpha & \alpha & 1+\alpha & & & \\
  & & & \frac{1}{2} & 0 & 0 \\
  & & & 0 & \frac{1}{2} & 0 \\
  & & & 0 & 0 & \frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}

Donde  \alpha:=\frac{\nu}{1-2\nu}

Véase también

Obtenido de "Energ%C3%ADa potencial"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • energía potencial — energía almacenada o inactiva Diccionario ilustrado de Términos Médicos.. Alvaro Galiano. 2010. energía potencial Energía contenida en un cuerpo por su posición en el espacio …   Diccionario médico

  • Energía potencial — ► locución FÍSICA Aquella que posee un cuerpo por hallarse dentro de un campo de fuerzas. * * * La energía potencial puede pensarse como la energía almacenada en un sistema, o como una medida del trabajo que un sistema puede entregar. Más… …   Enciclopedia Universal

  • Potencial químico — Saltar a navegación, búsqueda En química y específicamente termoquímica, potencial químico, cuyo símbolo es μ, es un término introducido en 1876 por el físicoquímico estadounidense Willard Gibbs, que él definió como sigue: «Si suponemos que se… …   Wikipedia Español

  • Potencial eléctrico — Saltar a navegación, búsqueda El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde la referencia hasta ese punto, dividido por unidad de carga de prueba. Dicho de otra forma …   Wikipedia Español

  • Energía gravitatoria — Saltar a navegación, búsqueda La energía potencial se debe a la posición respecto a la del suelo tomado como referencia. Si estas en pie en un trampolín de tres metros de altura, tienes 3 veces mas energía que en el trampolín de 1 metro. La… …   Wikipedia Español

  • Energía interna — Saltar a navegación, búsqueda En física, la energía interna U de un sistema intenta ser un reflejo de la energía a escala microscópica. Más concretamente, es la suma de: la energía cinética interna, es decir, de las sumas de las energías… …   Wikipedia Español

  • Energía mecánica — Saltar a navegación, búsqueda La energía mecánica puede manifestarse de diversas maneras. La energía mecánica es la energía que se debe a la posición y al movimiento de un cuerpo, por lo tanto, es la suma de las energías potencial y cinética de… …   Wikipedia Español

  • Energía de deformación — Saltar a navegación, búsqueda La energía de deformación es el aumento de energía interna acumulado en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación. Contenido 1 Energía de… …   Wikipedia Español

  • Potencial (física) — Saltar a navegación, búsqueda En física se define el potencial como una magnitud que puede ser escalar o vectorial, que sirve para describir la evolución o variación probable de otra magnitud. Generalmente los potenciales aparecen para describir… …   Wikipedia Español

  • Energía cinética — Saltar a navegación, búsqueda Para otros usos de este término, véase Cinética. Los carros de una montaña rusa alcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienz …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.