Algoritmo de búsqueda A*


Algoritmo de búsqueda A*
Ejemplo de aplicación del algoritmo A*.

El algoritmo de búsqueda A* (pronunciado "A asterisco" o "A estrella") se clasifica dentro de los algoritmos de búsqueda en grafos. Presentado por primera vez en 1968 por Peter E. Hart, Nils J. Nilsson y Bertram Raphael, el algoritmo A* encuentra, siempre y cuando se cumplan unas determinadas condiciones, el camino de menor coste entre un nodo origen y uno objetivo.

Contenido

Motivación y descripción

El problema de algunos algoritmos de búsqueda en grafos informados, como puede ser el algoritmo voraz, es que se guían en exclusiva por la función heurística, la cual puede no indicar el camino de coste más bajo, o por el coste real de desplazarse de un nodo a otro (como los algoritmos de escalada), pudiéndose dar el caso de que sea necesario realizar un movimiento de coste mayor para alcanzar la solución. Es por ello bastante intuitivo el hecho de que un buen algoritmo de búsqueda informada debería tener en cuenta ambos factores, el valor heurístico de los nodos y el coste real del recorrido.

Así, el algoritmo A* utiliza una función de evaluación f(n) = g(n) + h'(n), donde h'(n) representa el valor heurístico del nodo a evaluar desde el actual, n, hasta el final, y g(n), el coste real del camino recorrido para llegar a dicho nodo, n. A* mantiene dos estructuras de datos auxiliares, que podemos denominar abiertos, implementado como una cola de prioridad (ordenada por el valor f(n) de cada nodo), y cerrados, donde se guarda la información de los nodos que ya han sido visitados. En cada paso del algoritmo, se expande el nodo que esté primero en abiertos, y en caso de que no sea un nodo objetivo, calcula la f(n) de todos sus hijos, los inserta en abiertos, y pasa el nodo evaluado a cerrados.

El algoritmo es una combinación entre búsquedas del tipo primero en anchura con primero en profundidad: mientras que h'(n) tiende a primero en profundidad, g(n) tiende a primero en anchura. De este modo, se cambia de camino de búsqueda cada vez que existen nodos más prometedores.

Propiedades

Como todo algoritmo de búsqueda en anchura, A* es un algoritmo completo: en caso de existir una solución, siempre dará con ella.

Si para todo nodo n del grafo se cumple g(n) = 0, nos encontramos ante una búsqueda voraz. Si para todo nodo n del grafo se cumple h(n) = 0, A* pasa a ser una búsqueda de coste uniforme no informada.

Para garantizar la optimalidad del algoritmo, la función h(n) debe ser admisible, esto es, que no sobrestime el coste real de alcanzar el nodo objetivo.

De no cumplirse dicha condición, el algoritmo pasa a denominarse simplemente A, y a pesar de seguir siendo completo, no se asegura que el resultado obtenido sea el camino de coste mínimo. Asimismo, si garantizamos que h(n) es consistente (o monótona), es decir, que para cualquier nodo n y cualquiera de sus sucesores, el coste estimado de alcanzar el objetivo desde n no es mayor que el de alcanzar el sucesor más el coste de alcanzar el objetivo desde el sucesor.

Complejidad computacional

La complejidad computacional del algoritmo está íntimamente relacionada con la calidad de la heurística que se utilice en el problema. En el caso peor, con una heurística de pésima calidad, la complejidad será exponencial, mientras que en el caso mejor, con una buena h'(n), el algoritmo se ejecutará en tiempo lineal. Para que esto último suceda, se debe cumplir que

h'(x) \le g(y) - g(x) + h'(y)

donde h* es una heurística óptima para el problema, como por ejemplo, el coste real de alcanzar el objetivo.

Complejidad en memoria

El espacio requerido por A* para ser ejecutado es su mayor problema. Dado que tiene que almacenar todos los posibles siguientes nodos de cada estado, la cantidad de memoria que requerirá será exponencial con respecto al tamaño del problema. Para solucionar este problema, se han propuesto diversas variaciones de este algoritmo, como pueden ser RTA*, IDA* o SMA*.

Implementación en pseudocódigo

Tratar punto

.:= .
                                   // coste del camino hasta .

caso . = . perteneciente a ()
   si g(.) < g(.) entonces // (-----)
      // nos quedamos con el camino de menor coste
      .:= MEJORNODO
      actualizar g(.) y f'(.)
      propagar g a . de .
   eliminar .
   añadir . a ._MEJORNODO
caso . = . perteneciente a )-----(
   si g(.) < g(.) entonces
      // nos quedamos con el camino de menor coste
      .:= MEJORNODO
      actualizar g(.) y f'(.)
   eliminar .
   añadir . a ._MEJORNODO
caso . no estaba en ).( ni (.)
   añadir . a ).(
   añadir . a ._MEJORNODO
   f'(.) := g(.) + h'(.)


Implementación en pseudocódigo

ABIERTOS := [INICIAL] //inicialización 
CERRADOS := [] 
f'(INICIAL) := h'(INICIAL) 
repetir 
si ABIERTOS = [] entonces FALLO 
si no // quedan nodos 
extraer MEJORNODO de ABIERTOS con f' mí­nima 
// cola de prioridad 
mover MEJORNODO de ABIERTOS a CERRADOS 
si MEJORNODO contiene estado_objetivo entonces 
SOLUCION_ENCONTRADA := TRUE 
si no 
generar SUCESORES de MEJORNODO 
para cada SUCESOR hacer TRATAR_SUCESOR 
hasta SOLUCION_ENCONTRADA o FALLO

TRATAR_SUCESOR

SUCESOR.ANTERIOR := VIEJO 
// coste del camino hasta SUCESOR 

caso SUCESOR = VIEJO perteneciente a CERRADOS 
si g(SUCESOR) < g(VIEJO) entonces // (no si monotoní­a) 
// nos quedamos con el camino de menor coste 
VIEJO.ANTERIOR := MEJORNODO 
actualizar g(VIEJO) y f'(VIEJO) 
propagar g a sucesores de VIEJO 
eliminar SUCESOR 
añadir VIEJO a SUCESORES_MEJORNODO 
caso SUCESOR = VIEJO perteneciente a ABIERTOS 
si g(SUCESOR) < g(VIEJO) entonces 
// nos quedamos con el camino de menor coste 
VIEJO.ANTERIOR := MEJORNODO 
actualizar g(VIEJO) y f'(VIEJO) 
eliminar SUCESOR 
añadir VIEJO a SUCESORES_MEJORNODO 
caso SUCESOR no estaba en ABIERTOS ni CERRADOS 
añadir SUCESOR a ABIERTOS 
añadir SUCESOR a SUCESORES_MEJORNODO 
f'(SUCESOR) := g(SUCESOR) + h'(SUCESOR)

Observaciones

Como se mencionó anteriormente h'(x) es un estimador de h(x) que informa la distancia al nodo objetivo, entonces

Si h'(x) hace un estimación perfecta de h(x), A* converge inmediatamente al objetivo.

Si h'(x) = 0, la función g(x) controla la búsqueda.

Si h'(x) = 0 y g(x) =0 la búsqueda será aleatoria.

Si h'(x) = 0 y g(x) =1 o constante la búsqueda será Primero en Anchura.

Si h'(x) nunca sobrestima a h(x) (o subestima), se garantiza encontrar el camino optimo, pero se desperdicia esfuerzo explorando otras rutas que parecieron buenas.

Si h'(x) sobrestima a h(x), no puede garantizarse la consecución del camino del menor coste

Enlaces externos

Programa que ilustra el funcionamiento de varios algoritmos de busqueda.


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Algoritmo de búsqueda — Para otros usos de este término, véase Búsqueda. Un algoritmo de búsqueda es aquel que está diseñado para localizar un elemento con ciertas propiedades dentro de una estructura de datos; por ejemplo, ubicar el registro correspondiente a cierta… …   Wikipedia Español

  • Algoritmo de búsqueda de cadenas Boyer-Moore — El algoritmo de búsqueda de cadenas Boyer Moore es un particularmente eficiente algoritmo de búsqueda de cadenas, y ha sido el punto de referencia estándar para la literatura de búsqueda de cadenas práctica.[1] Fue desarrollado por Bob Boyer y J… …   Wikipedia Español

  • Algoritmo de Dijkstra — Ejecución del algoritmo de Dijkstra Tipo Algoritmo de búsqueda Problema que resuelve Problema del camino más corto …   Wikipedia Español

  • Búsqueda — Saltar a navegación, búsqueda Búsqueda puede hacer referencia a: Busca, acción de buscar. Motor de búsqueda, sistema informático que indexa archivos almacenados en servidores web gracias a su «spider» (o Web crawler). Búsqueda binaria o Algoritmo …   Wikipedia Español

  • Búsqueda en anchura — Saltar a navegación, búsqueda Para otros usos de este término, véase Búsqueda. En Ciencias de la Computación, Búsqueda en anchura (en inglés BFS Breadth First Search) es un algoritmo para recorrer o buscar elementos en un grafo (usado… …   Wikipedia Español

  • Búsqueda en profundidad — Saltar a navegación, búsqueda Para otros usos de este término, véase Búsqueda. Una Búsqueda en profundidad (en inglés DFS o Depth First Search) es un algoritmo que permite recorrer todos los nodos de un grafo o árbol de manera ordenada, pero no… …   Wikipedia Español

  • Algoritmo evolutivo — Los algoritmos evolutivos son métodos de optimización y búsqueda de soluciones basados en los postulados de la evolución biológica. En ellos se mantiene un conjunto de entidades que representan posibles soluciones, las cuales se mezclan, y… …   Wikipedia Español

  • Algoritmo de recocido simulado — Simulated annealing (SA) o recocido simulado es un algoritmo de búsqueda meta heurística para problemas de optimización global; el objetivo geneneral de este tipo de algoritmos es encontrar una buena aproximación al valor óptimo de una función en …   Wikipedia Español

  • Algoritmo — Los diagramas de flujo sirven para representar algoritmos de manera gráfica. En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus y éste a su vez del matemático persa Al… …   Wikipedia Español

  • Algoritmo de Gauss-Newton — En matemáticas, el algoritmo de Gauss Newton se utiliza para resolver problemas no lineales de mínimos cuadrados. Es una modificación del método de optimización de Newton que no usa segundas derivadas y se debe a Carl Friedrich Gauss. El problema …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.