Splicing de ARN


Splicing de ARN

El splicing de ARN o empalme de ARN(del inglés RNA splicing) es un proceso post-transcripcional de corte y empalme de ARN. Este proceso es muy común en eucariotas, pudiéndose dar en cualquier tipo de ARN aunque es más común en el ARNm. También se ha descrito en el ARNr y ARNt de procariotas y bacteriófagos. Normalmente consiste en eliminar los intrones del transcrito primario y posteriormente unir los exones; aunque existen otros tipos de ajuste donde se eliminan exones y/o retienen intrones (véase splicing alternativo).

Ilustración del proceso de splicing desde pre-ARN a ARN.

Contenido

En la naturaleza existen diversos métodos de splicing del ARN. El mecanismo de splicing depende de la estructura del fragmento de ARN que pasará por este proceso.

Spliceosoma

El Spliceosoma es un complejo formado por cinco ribonucleoproteínas nucleares pequeñas o snRNP (complejo formado por unas diez proteínas más una pequeña molécula de ARN). El ARN de los snRNP es el encargado de reconocer el intrón. Se han identificado dos tipos de spliceosomas, el mayor y el menor[cita requerida], cada uno de los cuales contiene diferentes tipos de snRNP.

Spliceosoma mayor

Esta formado por los snRNP U1, U2, U4, U5 y U6. Reconoce la secuencia consenso GU (Guanina-Uracilo) del extremo 5’ del intrón así como la secuencia consenso AG del extremo 3’. El 99% de los intrones lo hacen a través de este mecanismo.

  • Complejo E: U1 se une a la secuencia consenso GU del extremo 5’ del sitio de corte del intrón, junto con las proteínas accesorias ASF/SF2, U2AF, SF1/BBP.
  • Complejo A: U2 se une al sitio de ramificación e hidroliza ATP. El sitio de ramificación se sitúa a una distancia de 20-40 nucleótidos del extremo 3’ del intrón y en él se localiza la secuencia consenso CURAY.
  • Complejo B1: U5, U4 y U6 trimerizan, y U5 se une al exón 5’ y U6 a U2.
  • Complejo B2 – U1 es liberado, U5 pasa del exón al intrón y U6 se une al extremo 5’ del sitio de corte.
  • Complejo C1: U4 es liberado, U5 se une al sito de empalme del extremo 3’ del exón, U6 y U2 catalizan la reacción de transesterificación y el extremo 5’ del intrón es cortado; como resultado se forma una estructura en lazo característica denominada lariat.
  • Complejo C2: el extremo 3’ del intrón es cortado lo que provoca la liberación del lazo de ARN. A continuación los exones son ligados, lo que conlleva gasto de ATP. Por último, el complejo se disocia.
Spliceosoma menor

Es similar al Spliceosoma mayor aunque los intrones eliminados mediante este mecanismo son escasos, y además presentan diferencias en los sitios de corte y empalme. También se diferencian en las secuencias consenso reconocidas, que en este caso son AU y AC para los extremos 3’ y 5’, respectivamente. Además, salvo la partícula snRNP U5, el resto son análogos funcionales denominadas U11 (análogo funcional de la U1), U12 (U2), U4atac (U4) y U6atac(U6).

Splicing en trans

También se puede denominar transempalme o empalme en trans. Consiste en el empalme de exones de dos transcritos primarios distintos, con la consiguiente formación de un ARN híbrido.

Autosplicing

Corte y empalme en el que el propio intrón actúa como catalizador en su eliminación, por lo que no se requiere de proteínas. Cuando un fragmento de ARN tiene actividad catalítica se le denomina ribozima. Para que el mecanismo de autosplicing sea preciso se requiere de la hidrólisis de ATP. Existen dos tipos de intrones que actúan como ribozimas, los intrones del grupo I y los del grupo II. La similitud en el mecanismo de corte y empalme de estos intrones y el spliceosoma sugiere que probablemente evolucionaron juntos aunque también se ha propuesto que el autosplicing surgió durante el mundo de ARN.

Ilustración del mecanismo bioquímico del autoayuste.
Intrones del grupo I
  • El grupo OH 3’ de un nucleósido libre de guanina o del propio intrón o un cofactor (GMP, GDP o GTP) ataca al fosfato del sitio de corte 5’. Lo que da lugar al corte del intrón por su extremo 5’ y a la formación del lariat (estructura en lazo).
  • El grupo OH 3’ del exón lleva a cabo un ataque nucleofílico contra el extremo 3’ del intrón, lo que origina su corte y la liberación de la estructura en lazo.
  • Los exones son unidos.
Intrones del grupo II
  • El grupo OH 2’ de una adenosina específica del intrón ataca el sitio de corte 5’, originando la estructura en lazo (lariat).
  • El grupo OH 3’ del exón lleva a cabo un ataque nucleofílico contra el extremo 3’ del intrón, lo que origina su corte y la liberación de la estructura en lazo.
  • Los exones son unidos.

Splicing de ARNt

Es un mecanismo de corte y empalme poco usual que se observa en ARNt. El mecanismo involucra diferentes rutas bioquímicas como la splceosomal y el autosplicing.

Errores en el Splicing

Las mutaciones pueden afectar a los sitios de splicing, lo que puede influir sobre la síntesis proteica de distintas formas:

  • Pérdida del sitio de splicing: puede originar la aparición prematura de un codón de stop, la pérdida de un exón o la inclusión de un intrón.
  • Reducir la especificidad: puede variar la localización del sitio de splicing, lo que origina la inserción o deleción de aminoácidos o la pérdida de la pauta de lectura.
  • Transposición del sitio de splicing: origina la inserción o deleción de ARN, lo que origina cadenas de ARN más cortas o largas.

Splicing alternativo

El splicing alternativo permite obtener a partir de un transcrito primario de ARN distintas moléculas de ARN maduras. Este proceso ocurre principalmente en eucariotas aunque también puede observarse en virus. Para más información consultar el artículo principal: Splicing alternativo.



Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Splicing — Al hablar de splicing, también llamado corte y empalme, empalme o ayuste podemos referirnos a: Splicing de ARN: Es un proceso co transcripcional de corte y empalme de ARN. Este proceso es muy común en eucariotas, pudiéndose dar en cualquier tipo… …   Wikipedia Español

  • ARN no codificante — Se ha sugerido que este artículo o sección sea fusionado en Gen de ARN (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí …   Wikipedia Español

  • Splicing — Épissage Chez les eucaryotes (organismes dont les cellules possèdent un noyau), l’épissage (ou épissure) est un processus par lequel les ARN transcrits à partir de l ADN génomique peuvent subir des étapes de coupure et ligature qui conduisent à… …   Wikipédia en Français

  • ARN — Acide ribonucléique Structure 3D d un ARN régulateur (riboswitch)[1] …   Wikipédia en Français

  • ARN mensajero — El ARN mensajero (ARNm, o mRNA de su nombre en ingles) es el ácido ribonucleico que contiene la información genética procedente del ADN para utilizarse en la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos. El …   Wikipedia Español

  • ARN splicéosomal U6 — Un ARNsn U6. Les parties rouges sont les parties invariantes. L’ARN splicéosomal U6 est un petit ARN nucléaire (snRNA ou ARNpn) entrant dans la composition des petites ribonucléoprotéines nucléaires U6. Il se combine avec d autres RNPsn, de l ARN …   Wikipédia en Français

  • ARN splicéosomal U12 — Un ARNsn U12. Les parties rouges sont les parties invariantes. L’ARN splicéosomal U12 est un petit ARN nucléaire (snRNA ou ARNpn) non codant entrant dans la composition des petites ribonucléoprotéines nucléaires U12. Avec U4atac/U6atac, U5 et… …   Wikipédia en Français

  • Splicing alternativo — El splicing alternativo (alternative splicing en inglés) o empalme alternativo permite obtener a partir de un transcrito primario de mRNA o pre ARNm distintas moléculas de mRNA maduras. Este proceso ocurre principalmente en eucariotas, aunque… …   Wikipedia Español

  • ARN splicéosomal U4atac — Un ARNsn U4atac. Les parties rouges sont les parties invariantes. L’ARN splicéosomal U4atac est un petit ARN nucléaire (snRNA ou ARNpn) non codant entrant dans la composition des petites ribonucléoprotéines nucléaires U4atac. Il est une… …   Wikipédia en Français

  • Hipótesis del mundo de ARN — ARN con sus bases nitrogenadas a la izquierda y ADN a la derecha. La hipótesis del mundo de ARN propone que el ARN fue la primera forma de vida en la Tierra, desarrollando posteriormente una membrana celular a su alrededor y convirtiéndose así en …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.